Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(4): 964-975, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519541

RESUMO

Extremely halophilic archaea (Haloarchaea, Nanohaloarchaeota, Methanonatronarchaeia and Halarchaeoplasmatales) thrive in saturating salt concentrations where they must maintain osmotic equilibrium with their environment. The evolutionary history of adaptations enabling salt tolerance remains poorly understood, in particular because the phylogeny of several lineages is conflicting. Here we present a resolved phylogeny of extremely halophilic archaea obtained using improved taxon sampling and state-of-the-art phylogenetic approaches designed to cope with the strong compositional biases of their proteomes. We describe two uncultured lineages, Afararchaeaceae and Asbonarchaeaceae, which break the long branches at the base of Haloarchaea and Nanohaloarchaeota, respectively. We obtained 13 metagenome-assembled genomes (MAGs) of these archaea from metagenomes of hypersaline aquatic systems of the Danakil Depression (Ethiopia). Our phylogenomic analyses including these taxa show that at least four independent adaptations to extreme halophily occurred during archaeal evolution. Gene-tree/species-tree reconciliation suggests that gene duplication and horizontal gene transfer played an important role in this process, for example, by spreading key genes (such as those encoding potassium transporters) across extremely halophilic lineages.


Assuntos
Euryarchaeota , Salinidade , Filogenia , Archaea/genética , Euryarchaeota/genética , Metagenoma
2.
Curr Biol ; 34(2): 451-459.e6, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38262350

RESUMO

"Kingdom-level" branches are being added to the tree of eukaryotes at a rate approaching one per year, with no signs of slowing down.1,2,3,4 Some are completely new discoveries, whereas others are morphologically unusual protists that were previously described but lacked molecular data. For example, Hemimastigophora are predatory protists with two rows of flagella that were known since the 19th century but proved to represent a new deep-branching eukaryote lineage when phylogenomic analyses were conducted.2Meteora sporadica5 is a protist with a unique morphology; cells glide over substrates along a long axis of anterior and posterior projections while a pair of lateral "arms" swing back and forth, a motility system without any obvious parallels. Originally, Meteora was described by light microscopy only, from a short-term enrichment of deep-sea sediment. A small subunit ribosomal RNA (SSU rRNA) sequence was reported recently, but the phylogenetic placement of Meteora remained unresolved.6 Here, we investigated two cultivated Meteora sporadica isolates in detail. Transmission electron microscopy showed that both the anterior-posterior projections and the arms are supported by microtubules originating from a cluster of subnuclear microtubule organizing centers (MTOCs). Neither have a flagellar axoneme-like structure. Sequencing the mitochondrial genome showed this to be among the most gene-rich known, outside jakobids. Remarkably, phylogenomic analyses of 254 nuclear protein-coding genes robustly support a close relationship with Hemimastigophora. Our study suggests that Meteora and Hemimastigophora together represent a morphologically diverse "supergroup" and thus are important for resolving the tree of eukaryote life and early eukaryote evolution.


Assuntos
Eucariotos , Células Eucarióticas , Filogenia , Flagelos , Microscopia Eletrônica de Transmissão
3.
Microb Genom ; 9(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37994879

RESUMO

Archamoebae comprises free-living or endobiotic amoebiform protists that inhabit anaerobic or microaerophilic environments and possess mitochondrion-related organelles (MROs) adapted to function anaerobically. We compared in silico reconstructed MRO proteomes of eight species (six genera) and found that the common ancestor of Archamoebae possessed very few typical components of the protein translocation machinery, electron transport chain and tricarboxylic acid cycle. On the other hand, it contained a sulphate activation pathway and bacterial iron-sulphur (Fe-S) assembly system of MIS-type. The metabolic capacity of the MROs, however, varies markedly within this clade. The glycine cleavage system is widely conserved among Archamoebae, except in Entamoeba, probably owing to its role in catabolic function or one-carbon metabolism. MRO-based pyruvate metabolism was dispensed within subgroups Entamoebidae and Rhizomastixidae, whereas sulphate activation could have been lost in isolated cases of Rhizomastix libera, Mastigamoeba abducta and Endolimax sp. The MIS (Fe-S) assembly system was duplicated in the common ancestor of Mastigamoebidae and Pelomyxidae, and one of the copies took over Fe-S assembly in their MRO. In Entamoebidae and Rhizomastixidae, we hypothesize that Fe-S cluster assembly in both compartments may be facilitated by dual localization of the single system. We could not find evidence for changes in metabolic functions of the MRO in response to changes in habitat; it appears that such environmental drivers do not strongly affect MRO reduction in this group of eukaryotes.


Assuntos
Eucariotos , Mitocôndrias , Anaerobiose , Mitocôndrias/genética , Ferro , Sulfatos
4.
Proc Natl Acad Sci U S A ; 120(49): e2306381120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38019867

RESUMO

Inteins are self-splicing protein elements found in viruses and all three domains of life. How the DNA encoding these selfish elements spreads within and between genomes is poorly understood, particularly in eukaryotes where inteins are scarce. Here, we show that the nuclear genomes of three strains of Anaeramoeba encode between 45 and 103 inteins, in stark contrast to four found in the most intein-rich eukaryotic genome described previously. The Anaeramoeba inteins reside in a wide range of proteins, only some of which correspond to intein-containing proteins in other eukaryotes, prokaryotes, and viruses. Our data also suggest that viruses have contributed to the spread of inteins in Anaeramoeba and the colonization of new alleles. The persistence of Anaeramoeba inteins might be partly explained by intragenomic movement of intein-encoding regions from gene to gene. Our intein dataset greatly expands the spectrum of intein-containing proteins and provides insights into the evolution of inteins in eukaryotes.


Assuntos
Inteínas , Processamento de Proteína , Inteínas/genética , Eucariotos/genética , Proteínas/genética , Genoma
5.
Syst Biol ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843172

RESUMO

Biochemical constraints on the admissible amino acids at specific sites in proteins lead to heterogeneity of the amino acid substitution process over sites in alignments. It is well known that phylogenetic models of protein sequence evolution that do not account for site heterogeneity are prone to long-branch attraction (LBA) artifacts. Profile mixture models were developed to model heterogeneity of preferred amino acids at sites via a finite distribution of site classes each with a distinct set of equilibrium amino acid frequencies. However, it is unknown whether the large number of parameters in such models associated with the many amino acid frequency vectors can adversely affect tree topology estimates because of over-parameterization. Here we demonstrate theoretically that for long sequences, over-parameterization does not create problems for estimation with profile mixture models. Under mild conditions, tree, amino acid frequencies, and other model parameters converge to true values as sequence length increases, even when there are large numbers of components in the frequency profile distributions. Because large sample theory does not necessarily imply good behavior for shorter alignments we explore the performance of these models with short alignments simulated with tree topologies that are prone to LBA artifacts. We find that over-parameterization is not a problem for complex profile mixture models even when there are many amino acid frequency vectors. In fact, simple models with few site classes behave poorly. Interestingly, we also found that misspecification of the amino acid frequency vectors does not lead to increased LBA artifacts as long as the estimated cumulative distribution function of the amino acid frequencies at sites adequately approximates the true one. In contrast, misspecification of the amino acid exchangeability rates can severely negatively affect parameter estimation. Finally, we explore the effects of including in the profile mixture model an additional 'F-class' representing the overall frequencies of amino acids in the data set. Surprisingly, the F-class does not help parameter estimation significantly and can decrease the probability of correct tree estimation, depending on the scenario, even though it tends to improve likelihood scores.

7.
Nucleic Acids Res ; 51(7): 3185-3204, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36912092

RESUMO

We have uncovered a role for the promyelocytic leukemia (PML) gene and novel PML-like DEDDh exonucleases in the maintenance of genome stability through the restriction of LINE-1 (L1) retrotransposition in jawed vertebrates. Although the mammalian PML protein forms nuclear bodies, we found that the spotted gar PML ortholog and related proteins in fish function as cytoplasmic DEDDh exonucleases. In contrast, PML proteins from amniote species localized both to the cytoplasm and formed nuclear bodies. We also identified the PML-like exon 9 (Plex9) genes in teleost fishes that encode exonucleases. Plex9 proteins resemble TREX1 but are unique from the TREX family and share homology to gar PML. We also characterized the molecular evolution of TREX1 and the first non-mammalian TREX1 homologs in axolotl. In an example of convergent evolution and akin to TREX1, gar PML and zebrafish Plex9 proteins suppressed L1 retrotransposition and could complement TREX1 knockout in mammalian cells. Following export to the cytoplasm, the human PML-I isoform also restricted L1 through its conserved C-terminus by enhancing ORF1p degradation through the ubiquitin-proteasome system. Thus, PML first emerged as a cytoplasmic suppressor of retroelements, and this function is retained in amniotes despite its new role in the assembly of nuclear bodies.


Assuntos
Gnathostoma , Retroelementos , Animais , Humanos , Mamíferos/genética , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , Isoformas de Proteínas/genética , Retroelementos/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Gnathostoma/enzimologia , Gnathostoma/genética , Gnathostoma/metabolismo
8.
Curr Biol ; 33(6): 1099-1111.e6, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36921606

RESUMO

Mitochondrial cristae expand the surface area of respiratory membranes and ultimately allow for the evolutionary scaling of respiration with cell volume across eukaryotes. The discovery of Mic60 homologs among alphaproteobacteria, the closest extant relatives of mitochondria, suggested that cristae might have evolved from bacterial intracytoplasmic membranes (ICMs). Here, we investigated the predicted structure and function of alphaproteobacterial Mic60, and a protein encoded by an adjacent gene Orf52, in two distantly related purple alphaproteobacteria, Rhodobacter sphaeroides and Rhodopseudomonas palustris. In addition, we assessed the potential physical interactors of Mic60 and Orf52 in R. sphaeroides. We show that the three α helices of mitochondrial Mic60's mitofilin domain, as well as its adjacent membrane-binding amphipathic helix, are present in alphaproteobacterial Mic60. The disruption of Mic60 and Orf52 caused photoheterotrophic growth defects, which are most severe under low light conditions, and both their disruption and overexpression led to enlarged ICMs in both studied alphaproteobacteria. We also found that alphaproteobacterial Mic60 physically interacts with BamA, the homolog of Sam50, one of the main physical interactors of eukaryotic Mic60. This interaction, responsible for making contact sites at mitochondrial envelopes, has been conserved in modern alphaproteobacteria despite more than a billion years of evolutionary divergence. Our results suggest a role for Mic60 in photosynthetic ICM development and contact site formation at alphaproteobacterial envelopes. Overall, we provide support for the hypothesis that mitochondrial cristae evolved from alphaproteobacterial ICMs and have therefore improved our understanding of the nature of the mitochondrial ancestor.


Assuntos
Alphaproteobacteria , Proteínas Mitocondriais , Proteínas Mitocondriais/metabolismo , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Membranas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Evolução Biológica
9.
Parasit Vectors ; 16(1): 52, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732768

RESUMO

BACKGROUND: Blastocystis is one of the most common eukaryotic microorganisms colonizing the intestines of both humans and animals, but the conditions under which it may be a pathogen are unclear. METHODS: To study the genomic characteristics of circulating subtypes (ST) in Colombia, we established nine xenic cultures from Blastocystis isolated from human fecal samples, we identified 10 different subtypes, since one sample had a mixed infection. Thus, the genomes of the subtypes ST1 (n = 3), ST2 (n = 1), ST3 (n = 2), ST6 (n = 1), ST7 (n = 1), and ST8 (n = 2) were sequenced using Illumina and Oxford Nanopore Technologies (ONT). RESULTS: Analyses of these draft nuclear genomes indicated remarkable diversity in terms of genome size and guanine-cytosine (GC) content among the compared STs. Illumina sequencing-only draft genomes contained 824 to 2077 scaffolds, with total genome size ranging from 12 to 13.2 Mb and N50 values ranging from 10,585 to 29,404 base pairs (bp). The genome of one ST1 isolate was sequenced using ONT. This assembly was more contiguous, with a size of 20 million base pairs (Mb) spread over 116 scaffolds, and an N50 of 248,997 bp. CONCLUSION: This work represents one of the few large-scale comparative genomic analyses of Blastocystis isolates, providing an additional glimpse into its genomic diversity.


Assuntos
Infecções por Blastocystis , Blastocystis , Animais , Humanos , Blastocystis/genética , Colômbia , Variação Genética , Filogenia , DNA de Protozoário/genética , Fezes
10.
Curr Biol ; 32(20): 4473-4482.e7, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36055238

RESUMO

The evolution of streptophytes had a profound impact on life on Earth. They brought forth those photosynthetic eukaryotes that today dominate the macroscopic flora: the land plants (Embryophyta).1 There is convincing evidence that the unicellular/filamentous Zygnematophyceae-and not the morphologically more elaborate Coleochaetophyceae or Charophyceae-are the closest algal relatives of land plants.2-6 Despite the species richness (>4,000), wide distribution, and key evolutionary position of the zygnematophytes, their internal phylogeny remains largely unresolved.7,8 There are also putative zygnematophytes with interesting body plan modifications (e.g., filamentous growth) whose phylogenetic affiliations remain unknown. Here, we studied a filamentous green alga (strain MZCH580) from an Austrian peat bog with central or parietal chloroplasts that lack discernible pyrenoids. It represents Mougeotiopsis calospora PALLA, an enigmatic alga that was described more than 120 years ago9 but never subjected to molecular analyses. We generated transcriptomic data of M. calospora strain MZCH580 and conducted comprehensive phylogenomic analyses (326 nuclear loci) for 46 taxonomically diverse zygnematophytes. Strain MZCH580 falls in a deep-branching zygnematophycean clade together with some unicellular species and thus represents a formerly unknown zygnematophycean lineage with filamentous growth. Our well-supported phylogenomic tree lets us propose a new five-order system for the Zygnematophyceae and provides evidence for at least five independent origins of true filamentous growth in the closest algal relatives of land plants. This phylogeny provides a robust and comprehensive framework for performing comparative analyses and inferring the evolution of cellular traits and body plans in the closest relatives of land plants.


Assuntos
Carofíceas , Embriófitas , Estreptófitas , Filogenia , Evolução Biológica , Embriófitas/genética , Carofíceas/genética , Plantas , Solo
11.
Curr Biol ; 32(15): 3374-3384.e5, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35700733

RESUMO

Microbial eukaryotes display a stunning diversity of feeding strategies, ranging from generalist predators to highly specialized parasites. The unicellular "protoplast feeders" represent a fascinating mechanistic intermediate, as they penetrate other eukaryotic cells (algae and fungi) like some parasites but then devour their cell contents by phagocytosis.1 Besides prey recognition and attachment, this complex behavior involves the local, pre-phagocytotic dissolution of the prey cell wall, which results in well-defined perforations of species-specific size and structure.2 Yet the molecular processes that enable protoplast feeders to overcome cell walls of diverse biochemical composition remain unknown. We used the flagellate Orciraptor agilis (Viridiraptoridae, Rhizaria) as a model protoplast feeder and applied differential gene expression analysis to examine its penetration of green algal cell walls. Besides distinct expression changes that reflect major cellular processes (e.g., locomotion and cell division), we found lytic carbohydrate-active enzymes that are highly expressed and upregulated during the attack on the alga. A putative endocellulase (family GH5_5) with a secretion signal is most prominent, and a potential key factor for cell wall dissolution. Other candidate enzymes (e.g., lytic polysaccharide monooxygenases) belong to families that are largely uncharacterized, emphasizing the potential of non-fungal microeukaryotes for enzyme exploration. Unexpectedly, we discovered various chitin-related factors that point to an unknown chitin metabolism in Orciraptor agilis, potentially also involved in the feeding process. Our findings provide first molecular insights into an important microbial feeding behavior and new directions for cell biology research on non-model eukaryotes.


Assuntos
Cercozoários , Transcriptoma , Parede Celular/metabolismo , Quitina/metabolismo , Humanos , Oxigenases de Função Mista/metabolismo , Plantas/metabolismo
12.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35134997

RESUMO

Site-specific amino acid preferences are influenced by the genetic background of the protein. The preferences for resident amino acids are expected to, on average, increase over time because of replacements at other sites-a nonadaptive phenomenon referred to as the "evolutionary Stokes shift." Alternatively, decreases in resident amino acid propensity have recently been viewed as evidence of adaptations to external environmental changes. Using population genetics theory and thermodynamic stability constraints, we show that nonadaptive evolution can lead to both positive and negative shifts in propensities following the fixation of an amino acid, emphasizing that the detection of negative shifts is not conclusive evidence of adaptation. By examining propensity shifts from when an amino acid is first accepted at a site until it is subsequently replaced, we find that ≈50% of sites show a decrease in the propensity for the newly resident amino acid while the remaining sites show an increase. Furthermore, the distributions of the magnitudes of positive and negative shifts were comparable. Preferences were often conserved via a significant negative autocorrelation in propensity changes-increases in propensities often followed by decreases, and vice versa. Lastly, we explore the underlying mechanisms that lead propensities to fluctuate. We observe that stabilizing replacements increase the mutational tolerance at a site and in doing so decrease the propensity for the resident amino acid. In contrast, destabilizing substitutions result in more rugged fitness landscapes that tend to favor the resident amino acid. In summary, our results characterize propensity trajectories under nonadaptive stability-constrained evolution against which evidence of adaptations should be calibrated.


Assuntos
Aminoácidos , Evolução Molecular , Substituição de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Epistasia Genética , Proteínas/genética , Termodinâmica
13.
Nat Ecol Evol ; 6(3): 253-262, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35027725

RESUMO

Determining the phylogenetic origin of mitochondria is key to understanding the ancestral mitochondrial symbiosis and its role in eukaryogenesis. However, the precise evolutionary relationship between mitochondria and their closest bacterial relatives remains hotly debated. The reasons include pervasive phylogenetic artefacts as well as limited protein and taxon sampling. Here we developed a new model of protein evolution that accommodates both across-site and across-branch compositional heterogeneity. We applied this site-and-branch-heterogeneous model (MAM60 + GFmix) to a considerably expanded dataset that comprises 108 mitochondrial proteins of alphaproteobacterial origin, and novel metagenome-assembled genomes from microbial mats, microbialites and sediments. The MAM60 + GFmix model fits the data much better and agrees with analyses of compositionally homogenized datasets with conventional site-heterogenous models. The consilience of evidence thus suggests that mitochondria are sister to the Alphaproteobacteria to the exclusion of MarineProteo1 and Magnetococcia. We also show that the ancestral presence of the crista-developing mitochondrial contact site and cristae organizing system (a mitofilin-domain-containing Mic60 protein) in mitochondria and the Alphaproteobacteria only supports their close relationship.


Assuntos
Alphaproteobacteria , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Metagenoma , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Filogenia
15.
Curr Biol ; 31(24): 5605-5612.e5, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34710348

RESUMO

Discoveries of diverse microbial eukaryotes and their inclusion in comprehensive phylogenomic analyses have crucially re-shaped the eukaryotic tree of life in the 21st century.1 At the deepest level, eukaryotic diversity comprises 9-10 "supergroups." One of these supergroups, the Metamonada, is particularly important to our understanding of the evolutionary dynamics of eukaryotic cells, including the remodeling of mitochondrial function. All metamonads thrive in low-oxygen environments and lack classical aerobic mitochondria, instead possessing mitochondrion-related organelles (MROs) with metabolisms that are adapted to low-oxygen conditions. These MROs lack an organellar genome, do not participate in the Krebs cycle and oxidative phosphorylation,2 and often synthesize ATP by substrate-level phosphorylation coupled to hydrogen production.3,4 The events that occurred during the transition from an oxygen-respiring mitochondrion to a functionally streamlined MRO early in metamonad evolution remain largely unknown. Here, we report transcriptomes of two recently described, enigmatic, anaerobic protists from the genus Anaeramoeba.5 Using phylogenomic analysis, we show that these species represent a divergent, phylum-level lineage in the tree of metamonads, emerging as a sister group of the Parabasalia and reordering the deep branching order of the metamonad tree. Metabolic reconstructions of the Anaeramoeba MROs reveal many "classical" mitochondrial features previously not seen in metamonads, including a disulfide relay import system, propionate production, and amino acid metabolism. Our findings suggest that the cenancestor of Metamonada likely had MROs with more classical mitochondrial features than previously anticipated and demonstrate how discoveries of novel lineages of high taxonomic rank continue to transform our understanding of early eukaryote evolution.


Assuntos
Eucariotos , Organelas , Anaerobiose , Eucariotos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Organelas/genética , Organelas/metabolismo , Oxigênio/metabolismo , Filogenia
16.
Nat Commun ; 12(1): 6003, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650064

RESUMO

Cells replicate and segregate their DNA with precision. Previous studies showed that these regulated cell-cycle processes were present in the last eukaryotic common ancestor and that their core molecular parts are conserved across eukaryotes. However, some metamonad parasites have secondarily lost components of the DNA processing and segregation apparatuses. To clarify the evolutionary history of these systems in these unusual eukaryotes, we generated a genome assembly for the free-living metamonad Carpediemonas membranifera and carried out a comparative genomics analysis. Here, we show that parasitic and free-living metamonads harbor an incomplete set of proteins for processing and segregating DNA. Unexpectedly, Carpediemonas species are further streamlined, lacking the origin recognition complex, Cdc6 and most structural kinetochore subunits. Carpediemonas species are thus the first known eukaryotes that appear to lack this suite of conserved complexes, suggesting that they likely rely on yet-to-be-discovered or alternative mechanisms to carry out these fundamental processes.


Assuntos
Evolução Biológica , Eucariotos/genética , Genoma , Genômica , Animais , DNA/metabolismo , Células Eucarióticas/metabolismo , Microbiologia , Parasitos/genética , Proteínas/genética , Proteínas/metabolismo
17.
BMC Biol ; 19(1): 167, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34446013

RESUMO

BACKGROUND: Comparing a parasitic lineage to its free-living relatives is a powerful way to understand how that evolutionary transition to parasitism occurred. Giardia intestinalis (Fornicata) is a leading cause of gastrointestinal disease world-wide and is famous for its unusual complement of cellular compartments, such as having peripheral vacuoles instead of typical endosomal compartments. Endocytosis plays an important role in Giardia's pathogenesis. Endosomal sorting complexes required for transport (ESCRT) are membrane-deforming proteins associated with the late endosome/multivesicular body (MVB). MVBs are ill-defined in G. intestinalis, and roles for identified ESCRT-related proteins are not fully understood in the context of its unique endocytic system. Furthermore, components thought to be required for full ESCRT functionality have not yet been documented in this species. RESULTS: We used genomic and transcriptomic data from several Fornicata species to clarify the evolutionary genome streamlining observed in Giardia, as well as to detect any divergent orthologs of the Fornicata ESCRT subunits. We observed differences in the ESCRT machinery complement between Giardia strains. Microscopy-based investigations of key components of ESCRT machinery such as GiVPS36 and GiVPS25 link them to peripheral vacuoles, highlighting these organelles as simplified MVB equivalents. Unexpectedly, we show ESCRT components associated with the endoplasmic reticulum and, for the first time, mitosomes. Finally, we identified the rare ESCRT component CHMP7 in several fornicate representatives, including Giardia and show that contrary to current understanding, CHMP7 evolved from a gene fusion of VPS25 and SNF7 domains, prior to the last eukaryotic common ancestor, over 1.5 billion years ago. CONCLUSIONS: Our findings show that ESCRT machinery in G. intestinalis is far more varied and complete than previously thought, associates to multiple cellular locations, and presents changes in ESCRT complement which pre-date adoption of a parasitic lifestyle.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Giardia lamblia , Evolução Biológica , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Giardia lamblia/genética , Giardia lamblia/metabolismo , Transporte Proteico
18.
PLoS Biol ; 19(8): e3001365, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34358228

RESUMO

Phylogenomic analyses of hundreds of protein-coding genes aimed at resolving phylogenetic relationships is now a common practice. However, no software currently exists that includes tools for dataset construction and subsequent analysis with diverse validation strategies to assess robustness. Furthermore, there are no publicly available high-quality curated databases designed to assess deep (>100 million years) relationships in the tree of eukaryotes. To address these issues, we developed an easy-to-use software package, PhyloFisher (https://github.com/TheBrownLab/PhyloFisher), written in Python 3. PhyloFisher includes a manually curated database of 240 protein-coding genes from 304 eukaryotic taxa covering known eukaryotic diversity, a novel tool for ortholog selection, and utilities that will perform diverse analyses required by state-of-the-art phylogenomic investigations. Through phylogenetic reconstructions of the tree of eukaryotes and of the Saccharomycetaceae clade of budding yeasts, we demonstrate the utility of the PhyloFisher workflow and the provided starting database to address phylogenetic questions across a large range of evolutionary time points for diverse groups of organisms. We also demonstrate that undetected paralogy can remain in phylogenomic "single-copy orthogroup" datasets constructed using widely accepted methods such as all vs. all BLAST searches followed by Markov Cluster Algorithm (MCL) clustering and application of automated tree pruning algorithms. Finally, we show how the PhyloFisher workflow helps detect inadvertent paralog inclusions, allowing the user to make more informed decisions regarding orthology assignments, leading to a more accurate final dataset.


Assuntos
Eucariotos/genética , Filogenia , Software
19.
Protein Sci ; 30(10): 2009-2028, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34322924

RESUMO

Amino acid preferences vary across sites and time. While variation across sites is widely accepted, the extent and frequency of temporal shifts are contentious. Our understanding of the drivers of amino acid preference change is incomplete: To what extent are temporal shifts driven by adaptive versus nonadaptive evolutionary processes? We review phenomena that cause preferences to vary (e.g., evolutionary Stokes shift, contingency, and entrenchment) and clarify how they differ. To determine the extent and prevalence of shifted preferences, we review experimental and theoretical studies. Analyses of natural sequence alignments often detect decreases in homoplasy (convergence and reversions) rates, and variation in replacement rates with time-signals that are consistent with temporally changing preferences. While approaches inferring shifts in preferences from patterns in natural alignments are valuable, they are indirect since multiple mechanisms (both adaptive and nonadaptive) could lead to the observed signal. Alternatively, site-directed mutagenesis experiments allow for a more direct assessment of shifted preferences. They corroborate evidence from multiple sequence alignments, revealing that the preference for an amino acid at a site varies depending on the background sequence. However, shifts in preferences are usually minor in magnitude and sites with significantly shifted preferences are low in frequency. The small yet consistent perturbations in preferences could, nevertheless, jeopardize the accuracy of inference procedures, which assume constant preferences. We conclude by discussing if and how such shifts in preferences might influence widely used time-homogenous inference procedures and potential ways to mitigate such effects.


Assuntos
Aminoácidos , Evolução Molecular , Modelos Genéticos , Filogenia , Proteínas , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Proteínas/química , Proteínas/genética , Proteínas/metabolismo
20.
J Theor Biol ; 526: 110788, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34097914

RESUMO

Two recent high profile studies have attempted to use edge (branch) length ratios from large sets of phylogenetic trees to determine the relative ages of genes of different origins in the evolution of eukaryotic cells. This approach can be straightforwardly justified if substitution rates are constant over the tree for a given protein. However, such strict molecular clock assumptions are not expected to hold on the billion-year timescale. Here we propose an alternative set of conditions under which comparisons of edge length distributions from multiple sets of phylogenies of proteins with different origins can be validly used to discern the order of their origins. We also point out scenarios where these conditions are not expected to hold and caution is warranted.


Assuntos
Células Eucarióticas , Evolução Molecular , Modelos Genéticos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...